地震勘探原理 双语教学材料

联系方式: maonb@yangtzeu.edu.cn http://www.sciencenet.cn/blog/毛宁波.htm

Exercise 1

Substitute the plane wave solution

$$F = F_0 \exp[j(\omega t - kz)]$$

into the wave equation

$$\frac{\partial^2 F}{\partial z^2} - \frac{1}{c^2} \frac{\partial^2 F}{\partial t^2} = 0$$

and express the velocity c in terms of $\boldsymbol{\omega}$ and k

Exercise 2

For which component(s) of the receiver (A, B, C) do we measure a response in the five cases shown above?

	Receiver Geophone		
Case	A	В	C
1	?	?	?
2-5	?	?	?

Exercise 3: Angle-dependent reflection- and transmission-coefficients for an incident P-wave .9 .7 ENERGY .3 :2 .1 20 10 **3**0 50 70 ANGLE OF INCIDENCE (Sheriff and Geldart, 1995 Find values for: $v_{P1}/v_{P2}=?$ $\rho_1/\rho_2=?$ $v_{P1}/v_{S2}=?$ Seismics

Exercise 4:

Angle-dependent reflection- and transmission-coefficients for an incident P wave

Exercise 5

Check GPR reflection coefficient equation from Keary, Brooks and Hill (p. 225):

$$R = \frac{V_2 - V_1}{V_2 + V_1} = \frac{\sqrt{\varepsilon_2} - \sqrt{\varepsilon_1}}{\sqrt{\varepsilon_2} + \sqrt{\varepsilon_1}}$$

This equation is not correct, what is wrong?

Exercise 6:

 Calculate the reflection coefficient for a wave that travels up and reflects at the free-surface of the see

```
\square \rho_{air}=1.293 kg/m³, \rho_{water}=1025kg/m³ – V_{air}=0.3 km/s, v_{water}= 1.4 km/s)
```

• Calculate the reflection coefficient for a GPR wave that travels down in dry sand $(\epsilon_r=4)$ and reflects at the saturated sand $(\epsilon_r=30)$

Seismics & GPR